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Introduction

The BFKL equation became famous due to the prediction of the rapid
growth of the γ∗p cross sections discovered at HERA.

Therefore BFKL is usually associated with the evolution equation for the
unintegrated gluon distribution.

Cross sections of processes with a hard scale Q2 symbolically may be
written as

F
⊗

σ̂
⊗

F

F i
A(x,Q2) —parton distributions

σij(xi, xj , Q
2) – partonic cross sections.

Evolution of the parton distributions with τ = ln
(

Q2/Λ2
QCD

)

is determined
by the DGLAP equations
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Introduction

V.N. Gribov, L.N. Lipatov, 1972,
L.N. Lipatov, 1975,

G. Altarelli, Parisi, 1977
Yu.L. Dokshitzer, 1977,

∂F
∂τ

=
ᾱS(Q2)

2π
P
⊗

F

which are basically renorm group equations. The standard DGLAP
approach fails at small x = Q2/s (s is c.m.s. energy squared), in
particular because of the necessity to sum the terms of the perturbation
series enhanced by powers of log(1/x).
Resummation of leading log(1/x)-terms (αS ln(1/x))n was performed in
the BFKL approach
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Introduction

V.S.F., E.A. Kuraev, L.N.Lipatov, 1975,
E.A. Kuraev, L.N. Lipatov, V.S.F., 1976,

Ya.Ya. Balitskii, L.N. Lipatov, 1978,
based on the gluon Reggeization.
The BFKL approach describes evolution of the unintegrated gluon
distribution F(x,~k2) not in lnQ2, but in ln(1/x):

∂F
∂ ln(1/x)

= K
⊗

F ,

K is the BFKL kernel and
⊗

means convolution not over fractions of
longitudinal momenta as in the DGLAP equation, but over transverse
momenta. The BFKL equation resums the terms
(αS ln(1/x))n at leading order (LOx),
αS(αS ln(1/x))n ) at next-to-leading order (NLOx).
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Introduction

In the leading logarithmic approximation (LLA) it predicts σ ∼
(

1
x

)ωP ,
where the Pomeron intercept (with subtracted 1)

ωP = 4Nc
αs

π
ln 2, ωP ' 0.4 for αs = 0.15

. The BFKL equation became famous just due to this prediction, since the
rapid growth of the γ∗p cross sections was discovered at HERA.

Therefore BFKL is usually associated with the evolution equation for the
unintegrated gluon distribution.

Actually the region of applicability of the BFKL approach is much wider.

The evolution equation for the unintegrated gluon distribution appears in
this approach as a particular result for the imaginary part of the forward
scattering amplitude (t = 0 and vacuum quantum numbers in the
t-channel).
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Introduction

But the approach gives the description of scattering amplitudes at any
fixed momentum transfer

√
−t and at any colour state

in the t-channel in the limit of large center-of-mass energy
√
s (Regge

limit).

It is worthwhile to add that
the approach was developed, and is more suitable, for the description of
processes with only one hard scale,
such as γ∗γ∗ scattering with both photon virtualities of the same order,
where the DGLAP evolution is absent.

In the leading logarithmic approximation (LLA) neither scale of energy nor
scale of transverse momenta entering in strong coupling αs(k⊥) are fixed.
They can be determined at next-to-leading approximation NLA, when the
terms αS(αS ln(1/x))n are resummed. The Pomeron intercept and
normalization of cross sections can be fixed only in the NLA.

SCHOOL ON QCD, LOW X PHYSICS, SATURATION AND DIFFRACTION; Copanello (Calabria, Italy), July 1 - 14 2007 – p. 7/43



Introduction

Evidently the power growth violate the Froissart bound

σtot < const(ln s)2.

This problem can not be solved by calculation of radiative corrections at
any fixed NNN...NL order and requires other methods. The most
popular now are non-linear generalizations of the BFKL equation, related
to the idea of saturation of parton densities

L.V. Gribov, E.M. Levin, M.G. Ryskin, 1983.
A general approach to the unitarization problem is reformulating of QCD in
terms of a gauge-invariant effective field theory for the Reggeized gluon
interactions

L.N. Lipatov 1995.
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Fixed order calculations

The idea of the gluon Reggeization arised as the result of the fixed order
calculations.
Dispersion approach based on the analyticity and unitarity

L.N. Lipatov, 1976.
Born amplitudes: t-channel unitarity.
Elastic scattering amplitudes AA′B′

AB (s, t): t-channel discontinuity
pA

pB

pA′

pB′

1

gµν → 2pµ
Bp

ν
A

s
; 2i=tAA′B′

AB (s, t) = −4πisδ(t)Γc
A′AΓc

B′B ;
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Fixed order calculations

The discontinuity determines the amplitudes unambiguously.
pA pA′

pB pB′

1

AA′B′

AB (s, t) =
2s

t+ i0
Γc

A′AΓc
B′B

Γc
P ′P = gT c

P ′P δλP ′λP

T c
P ′P – the colour group generators
λ– helicities
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Fixed order calculations

Dispersion approach requires production amplitudes.
Amplitudes AA′DB′

AB (s, t): tA and tB-channel discontinuities

pA pA′

PD

pB pB′

pA pA′

PD

pB pB′

1
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Fixed order calculations

pA pA′

PD

pB pB′

1

AA′DB′

AB = 2sΓc1

A′A

1

t1
γd

c1c2
(q1, q2)

1

t2
Γc2

B′B

γd
c1c2

(q1, q2) = gT d
c1c2

e∗µ(k)Cµ(q2, q1)

Cµ(q2, q1) = −qµ
1 − qµ

2 + pµ
1 (

q21
kp1

+ 2
kp2

p1p2
) − pµ

2 (
q22
kp2

+ 2
kp1

p1p2
)
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Fixed order calculations

Radiative corrections: s–channel unitarity

pA pA′

pB pB′

pA pA′

pB pB′

1
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Fixed order calculations

The results are compatible with the Reggeized form of elastic amplitudes
pA pA′

pB pB′

1

AA′B′

AB = Γc
A′A

[

(−s
−t

)æ(t)

−
(

s

−t

)æ(t)
]

Γc
B′B ;

j(t) = 1 + ω(t) – Reggeon trajectory

ω(t) =
g2Nct

2(2π)D−1

∫

dD−2q1
~q 2
1 (~q − ~q1)2

= −g2NcΓ(1 − ε)

(4π)D/2

Γ2(ε)

Γ(2ε)
(~q 2)ε
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The gluon Reggeization hypothesis

The three-loop calculations

V.S. F., E.A. Kuraev, L.N. Lipatov 1975.
confirmed the reggeized form of the elastic amplitudes
and permitted to formulate the Reggeization hypothesis for inelastic ones

A

B

Ã

B̃

q1, c1

qi, ci

qi+1, ci+1

qn+1, cn+1

J1

Ji

Jn

1

<AÃB̃+n
AB = 2sΓc1

ÃA

(

n
∏

i=1

γJi
cici+1

(qi, qi+1)

(

si

s0

)ω(ti) 1

ti

)

1

tn+1

(

sn+1

s0

)ω(tn+1)

Γ
cn+1

B̃B
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The gluon Reggeization hypothesis

The hypothesis is extremely powerful:

It allows us to express scattering amplitudes only through several
effective vertices and gluon trajectory.

It creates the basis of the BFKL approach to the theoretical
description of high energy scattering.

The Pomeron and Odderon in QCD appear as the compound state of
the Reggeized gluons.

The effective action based on Reggeized gluons is the most general
way of the solution of saturation and unitarization problems.

It gives a link between QCD and the String Theory.
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The gluon Reggeization hypothesis

Assuming this form the vertices ΓP ′P and the Regge trajectories ω can be
easily calculated in the leading order (LO).

To find them it is sufficient to calculate the simplest elastic scattering
amplitude with the P → P ′ transition in the Born approximation. Of
course, other processes can be used to test that the Regge form is valid.

To find a trajectory it is sufficient to calculate with logarithmic accuracy
one-loop correction to elastic scattering amplitude with corresponding
quantum numbers in the t–channel.

Of course, neither the calculation, nor the results are not so simple in the
next-to-leading order (NLO).

All vertices for interaction of the Reggeon with quarks and gluons are
known in the NLO
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The gluon Reggeization hypothesis

V.S.F., L.N. Lipatov, 1993;
V.S.F., R. Fiore, 1992;

V.S.F., R. Fiore, A. Quartarolo; 1994;
V.S.F, R. Fiore, M.I. Kotsky, 1995.

The two-loop contribution to the Regge trajectory was obtained at
arbitrary space-time dimension D = 4 + 2ε in terms of integrals over
transverse momenta

V.S.F., R. Fiore, M.I. Kotsky, 1995;
V.S.F., R. Fiore, A. Quartarolo, 1996;

V.S.F., R. Fiore, M.I. Kotsky, 1996.
The integrals can be expressed in terms of elementary functions only for
ε→ 0.

SCHOOL ON QCD, LOW X PHYSICS, SATURATION AND DIFFRACTION; Copanello (Calabria, Italy), July 1 - 14 2007 – p. 18/43



The gluon Reggeization hypothesis

Explicit expression for the two-loop contribution

V.S.F., M.I. Kotsky, 1996;
J. Bluemlein, V. Ravindran, W.L. van Neerven, 1998;

V.Del Duca, E.W.N. Glover, 2001
in pure gluodynamics

ω(2)(t) '
(

ḡ2
(

~q 2
)ε

ε

)2
[

11

3
+

(

2ψ′(1) − 67

9

)

ε

+

(

404

27
+ ψ′′(1) − 22

3
ψ′(1)

)

ε2
]

, ḡ2 =
g2NΓ(1 − ε)

(4π)D/2
.

where ψ(x) = Γ′(x)/Γ(x), Γ is the Euler gamma-function. The
space-time dimension D = 4 + 2ε =/4.
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The gluon Reggeization hypothesis

ΓR
Q′Q and ΓR

G′G describe transitions Q → Q′ and G → G′ in collision with
Reggeon R.

In light cone gauge the vertex of gluon transition can be written as:
Γ

c(B)
G′G = −g

(

e∗(p′)e(p)
)

⊥
T c

G′G

Γa
G′G = Γ

a(B)
G′G

{

1 +
ω(1)(t)

2

[2

ε
+ ψ(1) + ψ(1 − ε) − 2ψ(1 + ε)−

− 9(1 + ε)2 + 2

2(1 + ε)(1 + 2ε)(3 + 2ε)
+
nf

Nc

(1 + ε)3 + ε2

(1 + ε)2(1 + 2ε)(3 + 2ε)

]}

+

+ gT a
G′Ge

′
∗

⊥µe⊥ν

(

gµν
⊥

− (D − 2)
qµ
⊥
qν
⊥

q2
⊥

) εω(1)(t)

2(1 + ε)2(1 + 2ε)(3 + 2ε)

(

1 + ε− nf

Nc

)

,

V.S. F., L.N. Lipatov, 1993
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Scattering amplitudes

Amplitudes of processes with all possible quantum numbers in the
t–channel are calculated using unitarity and analiticity .

pA

pB

pA′

pB′

q1

qi

qi+1

qn+1

q′

1

q′

i

q′

i+1

q′

n+1

Σn
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Scattering amplitudes

The amplitudes are presented in the form :

ΦA′A ⊗ G ⊗ ΦB′B.

pA pA′

ΦA′A

q1 q1 − q

q2 q2 − q

G

pB pB′

ΦB′B
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Scattering amplitudes

Impact factors ΦA′A and ΦB′B describe transitions A→ A′ B → B′ ,
G – Green’s function for two interacting Reggeized gluons,

Ĝ = eY K̂,

K̂ – BFKL kernel, Y = ln(s/s0) ,

K̂ = ω̂1 + ω̂2 + K̂r

K̂r = K̂G + K̂QQ̄ + K̂GG

Energy dependence of scattering amplitudes is determined by the BFKL
kernel.
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Scattering amplitudes
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The gluon Reggeization

The Reggeon vertices and trajectory were obtained assuming the
Reggeized form of elastic amplitudes.

This form was proved at Born level using t–channel unitarity and
analyticity. Their Regeization (appearance of the Regge factors sω(t) as a
result of calculation of radiative corection) arose as a hypothesis in the
LLA (only gluons can be produced and each jet is actually a gluon in this
approximation) on the basis of direct calculations at three-loop level for
elastic amplitudes and one-loop level for one-gluon production
amplitudes. Later it was proved in the LLA for all amplitudes at arbitrary
number of loops with the help of bootstrap relations

Ya.Ya. Balitskii, L.N. Lipatov, V.S.F., 1978
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The gluon Reggeization

The hypothesis is extremely powerful since an infinite number of
amplitudes is expressed in terms of the gluon Regge trajectory and
several Reggeon vertices.

Evidently, its proof is extremely desirable. The proof is especially
necessary because of appearance of statements about existence of
contributions violating the Regge ansatz at three loop level.

T. Kucs, 2004

Now the desired proof is completed

V.S.F., R. Fiore, M.G. Kozlov, A. V. Reznichenko, 2006
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The gluon Reggeization

The proof of the gluon Reggeization in the NLA is also based on the
bootstrap relations. following from the bootstrap requirement (compatibility
of the Reggeized form with the s–channel unitarity)

pA pA′

ΦA′A

q1 q1 − q

q2 q2 − q

G

pB pB′

ΦB′B

↔

pA

pB

pA′

pB′

1

1

−πidiscsAA′B′

AB =
∂

∂s
<AA′B′

AB /s

SCHOOL ON QCD, LOW X PHYSICS, SATURATION AND DIFFRACTION; Copanello (Calabria, Italy), July 1 - 14 2007 – p. 27/43



The gluon Reggeization

The proof of the gluon Reggeization in the NLA is also based on the
bootstrap relations:

1

−πi





n+1
∑

l=j+1

discsj,l
−

j−1
∑

l=0

discsl,j



AS

2→n+2/(p
+
Ap

−

B) =
∂

∂yj
AS

2→n+2(yi)/(p
+
Ap

−

B)

that allow us to express partial derivatives ∂/∂yj of the amplitudes,
through the certain combination of discontinuities of the signaturized
amplitudes:
S means symmetrization with respect to simultaneous change of signs of
all si,j with i < k ≤ j, performed independently for each number of
channel k = 1, . . . , n+ 1.
One of the methods for the b.r. derivation is based on the Steinmann
theorem in conjunction with general analytical properties of the MRK
amplitudes
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The gluon Reggeization

If we prove the b.r. in perturbative calculation, it will means the proof of the
Regge form in NLA, since one can recursively calculate Regge amplitudes
loop-by-loop in all orders of coupling constant using MRK amplitudes only
in the one loop approximation for every n as an input. Indeed, b.r. express
all partial derivatives of the real parts at some number of loops through
the discontinuities, calculated using the s-channel unitarity in terms of
amplitudes with a smaller number of loops. In the NLA only real parts of
the amplitudes do contribute in the unitarity relations.
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BFKL Pomeron

Talking about the BFKL kernel one usually has in mind the case of the
forward scattering, i.e. t = 0 and vacuum quantum numbers in the
t-channel. However, the BFKL approach is not limited to this particular
case and, what is more, from the beginning it was developed for arbitrary t
and for all possible t-channel colour states.

The forward BFKL kernel at NLO was found more than seven years ago.
V.S.F., L.N. Lipatov, 1998,

M. Ciafaloni, G. Camici, 1998. The forward kernel can carry only
restrictive information about the BFKL dynamics. Moreover, the
non-forward case has an advantage of smaller sensitivity to large-distance
contributions, since the diffusion in the infrared region is limited by

√

|t|.
But the calculation of the non-forward kernel at NLO was completed only
last year.

The reason was a complexity of the two-gluon contribution.
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BFKL Pomeron

The “real" contribution

K̂r = K̂G + K̂QQ̄ + K̂GG

is related to particle production in Reggeon-Reggeon collisions and
consists of parts coming from one-gluon, two-gluon and quark-antiquark
pair production. The first part is also universal, apart from a colour
coefficient, and is also known in the NLO

V.S.F., D.A. Gorbachev, 2000.

The new contributions which appear in the NLO are K̂QQ̄ and K̂GG .
Each of them is written as a sum of two terms with coefficients depending
on a colour representation R in the t-channel. For the QQ̄ case both
these terms are known. Instead, only the piece related to the gluon
channel was known for the GG case.

V.S.F., D.A. Gorbachev, 2000.
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BFKL Pomeron

Thus, the two-gluon contribution was the only missing piece in the the
non-forward BFKL kernel.

The “non-subtracted" contribution to the kernel KGG is

∑

G1G2

∫

γG1G2
(

γ′G1G2
)∗

dφG1G2
,

γG1G2 and γ′G1G2 – effective vertices for two-gluon production in collision
of Reggeized gluons with momenta q1, −q2 and q′1, −q′2 respectively;

q1 − q′1 = q2 − q′2 = q,

q is the total momentum transfer,

q1 − q2 = q′1 − q′2 = k1 + k2,
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BFKL Pomeron

ki – momenta of produced gluons,
dφG1G2

– their phase space element; the sum is over polarizations and
colours of produced gluons. For two-gluon states (and only for them) the
integral over their invariant mass k2 is logarithmically divergent at large k2,
that requires subtraction of the region of large invariant mass. This region
is taken into account in the leading terms.

The two-gluon vertex

L.N. Lipatov, V.S.F., 1989.
contains two colour structures:

γG1G2 = TG1TG2γ12 + TG2TG1γ21 ,

Accordingly, for any representation of R of the colour group the two-gluon
contribution K(R)

GG contains two terms:
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BFKL Pomeron

"direct"

TG1TG2TG2TG1

and "interference"

TG1TG2TG1TG2 ,

with different colour coefficients aR and bR and the functions Fa and Fb,

Fa ∝ γ1γ
′

1 + γ2γ
′

2, Fb ∝ γ1γ
′

2 + γ2γ
′

1,

With account of the subtraction K(R)
GG is presented in the form

2g4N2
c

(2π)D−1
Ŝ
∫ 1

0

dx

∫

d2+2εk1

(2π)D−1

(

aRFa(k1, k2) + bRFb(k1, k2)

x(1 − x)

)

+

,
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BFKL Pomeron

where the operator Ŝ symmetrizes with respect to exchange of the
Reggeon momenta, x is a fraction of longitudinal momenta of a produced
gluon,

(

f(x)

x(1 − x)

)

+

≡ 1

x
[f(x) − f(0)] +

1

(1 − x)
[f(x) − f(1)],

The group coefficients are expressed through the coefficients cR

appearing in the leading order: aR = c2R and bR = cR
(

cR − 1
2

)

.

For the colour group SU(Nc) with Nc = 3 the possible representations R
are

1, 8a, 8s, 10, 10, 27.
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BFKL Pomeron

Corresponding coefficients are

c1 = 1 , c8a
= c8s

=
1

2
, c10 = c10 = 0 , c27 = − 1

4Nc

In particular,

a0 = 1 , a8a
= a8s

=
1

4
, b1 = 1/2, b8a

= b8s
= 0.

The last equality is especially important for the antisymmetric case, since
the vanishing of b8a

is crucial for the gluon Reggeization.
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BFKL Pomeron

The equality b8 = 0 extremely simplifies calculation of the octet kernel

V.S.F., D.A. Gorbachev, 2000.

Remarkably, that only planar diagrams contribute to K(8)
GG due to the colour

structure.

Instead of calculation of the second term in

2g4N2
c

(2π)D−1
Ŝ
∫ 1

0

dx

∫

d2+2εk1

(2π)D−1

(

aRFa(k1, k2) + bRFb(k1, k2)

x(1 − x)

)

+

we have found more convenient to calculate the “symmetric" contribution

K(s)
GG(~q1, ~q2; ~q) =

2g4N2
c

(2π)D−1
Ŝ
∫ 1

0

dx

∫

d2+2εk1

(2π)D−1

(

Fs(k1, k2)

x(1 − x)

)

+
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BFKL Pomeron

where

Fs = Fa + Fb ∝ (γ1 + γ2)(γ
′

1 + γ′2).

A marvellous feature of K(s)
GG is absence of infrared singularities.

The disappearance of the singularities is rather tricky: it takes place due
to independence of infrared singular terms in the Fs from x. Because of
this reason the singularities vanish after the substraction.

Relations between the colour coefficients aR and bR permits to write the
two-gluon contribution to the kernel for any representation R is the form

K(R)
GG = 2cRK(8)

GG + bRK(s)
GG.

Moreover, in pure gluodynamics an analogous relations is valid for total
"real" parts of the kernel: SCHOOL ON QCD, LOW X PHYSICS, SATURATION AND DIFFRACTION; Copanello (Calabria, Italy), July 1 - 14 2007 – p. 38/43
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K(R)
r = 2cRK(8)

r + bRK(s)
GG.

Since K(s)
GG is infrared safe, this relation greatly simplifies analysis of

infrared singularities, especially because

The "real" part K(8)
r for the gluon channel is rather simple
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K
(8)
r (~q1, ~q2; ~q) =

g2Nc

2(2π)D−1

� �

~q 2
1 ~q ′ 2

2 + ~q ′ 2
1 ~q 2

2

~k 2
− ~q 2

�

×

�

1

2
+

g2NcΓ(1− ε)(~k 2)ε

(4π)2+ε

�

−
11

6ε
+

67

18
− ζ(2) + ε

�

−
202

27
+ 7ζ(3) +

11

6
ζ(2)

� �

�

+
g2NcΓ(1− ε)

(4π)2+ε

�

~q 2

�

11

6
ln

�

~q 2
1 ~q 2

2

~q 2~k 2

�

+
1

4
ln

�

~q 2
1

~q 2

�

ln
�

~q ′2
1

~q 2

�

+
1

4
ln

�

~q 2
2

~q 2

�

ln

�

~q ′2
2

~q 2

�

+
1

4
ln2

�

~q 2
1

~q 2
2

� �

−
~q 2
1 ~q ′ 2

2 + ~q 2
2 ~q ′ 2

1

2~k 2
ln2

�

~q 2
1

~q 2
2

�

+
~q 2
1 ~q ′ 2

2 − ~q 2
2 ~q ′ 2

1

~k 2
ln

�

~q 2
1

~q 2
2

� �

11

6
−

1

4
ln

�

~q 2
1 ~q 2

2

~k 4

� �

+
1

2
[~q 2(~k 2

− ~q 2
1 − ~q 2

2 ) + 2~q 2
1 ~q 2

2 − ~q 2
1 ~q ′ 2

2 − ~q 2
2 ~q ′ 2

1 +
~q 2
1 ~q ′ 2

2 − ~q 2
2 ~q ′ 2

1

~k 2
(~q 2

1 − ~q 2
2 )]

×I(~q 2
1 , ~q 2

2 , ~k 2)
� �

+
g2Nc

2(2π)D−1

�

~qi ←→ ~q ′

i

	

,

where

I(a, b, c) =
1

0

dx

a(1− x) + bx− cx(1− x)
ln

�

a(1− x) + bx

cx(1− x)

�

.
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The "symmetric" contribution is rather complicated. The complexity is
related to the non-planar diagrams. t is known since the calculation of the
non-forward kernel for the QED Pomeron

V.N. Gribov, L.N. Lipatov, G.V. Frolov, 1970
H. Cheng, T.T. Wu, 1970 where only box and cross-box diagrams are

relevant. The kernel was found only in the form of two-dimensional
integral.

In QCD the situation is greatly worse because of the existence of
cross-pentagon and cross-hexagon diagrams in addition to QED-type
cross-box diagrams.

It requires the use of additional Feynman parameters.

At arbitrary D no integration over these parameters at all can be done in
elementary functions. It occurs, however, that

in the limit ε→ 0 the integration over additional Feynman parameters can
be performed, so that the result can be written as two-dimensional
integral, as well as in QED.

SCHOOL ON QCD, LOW X PHYSICS, SATURATION AND DIFFRACTION; Copanello (Calabria, Italy), July 1 - 14 2007 – p. 41/43



Summary

The BFKL approach gives the most common basis for the theoretical
description of small x processes

It is applicable to scattering amplitudes
at any fixed momentum transfer

√
−t and at any colour state in the

t-channel

The basis of the BFKL approach is the
gluon Reggeization

The gluon Reggeization is a remarkable property of QCD, very
important for description of high energy processes
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Summary

The Reggeization hypothesis is extremely powerful: all scattering
amplitudes are expressed in terms of the gluon trajectory and several
Reggeon vertices

The non-forward BFKL kernel is calculated now in the NLO for any
colour state in the t-channel

The gluon Reggeization hypothesis of is proved in the NLA
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